A bird nest is the spot in which a bird lays and Avian incubation its Bird egg and raises its young. Although the term popularly refers to a specific structure made by the bird itself—such as the grassy cup nest of the American robin or Eurasian blackbird, or the elaborately woven hanging nest of the Montezuma oropendola or the village weaver—that is too restrictive a definition. For some species, a nest is simply a shallow depression made in sand; for others, it is the knot-hole left by a broken branch, a burrow dug into the ground, a chamber drilled into a tree, an enormous rotting pile of vegetation and earth, a shelf made of dried saliva or a mud dome with an entrance tunnel. Some birds, including Magpie, have been observed building nests using anti-bird spikes. In some cases, these nests can contain up to 1,500 metal spikes. Magpie use the spikes to form a protective dome, which may help deter predators and safeguard their chicks, ironically using the spikes in a way that still serves their original purpose of keeping (other) birds away. The smallest bird nests are those of some , tiny cups which can be a mere across and high. At the other extreme, some nest mounds built by the dusky scrubfowl measure more than in diameter and stand nearly tall. The study of birds' nests is known as caliology or nidology.
Not all bird species build nests. Some species lay their eggs directly on the ground or rocky ledges, while brood parasites lay theirs in the nests of other birds, letting unwitting "foster parents" do the work of rearing the young. Although nests are primarily used for breeding, they may also be reused in the non-breeding season for roosting and some species build special dormitory nests or roost nests (or winter-nest) that are used only for roosting. Most birds build a new nest each year, though some refurbish their old nests. smithsonianscience.org 2015-04-20 Bird nests: Variety is Key for the world's avian Architects The large eyries (or aeries) of some eagles are platform nests that have been used and refurbished for several years. The Eurasian coot also reuses nesting sites, particularly in urban areas like the canals of Amsterdam, where nests made from plastic waste have formed stratified layers over decades. These layers, preserved due to the non-degradable nature of plastic, can be dated using Expiration date on food packaging found within them.
In the majority of nest-building species the female does most or all of the nest construction, in others both partners contribute; sometimes the male builds the nest and the hen lines it.
and also do not build nests; instead, they tuck their eggs and chicks between their feet and folds of skin on their lower bellies. They are thus able to move about while incubating, though in practice only the emperor penguin regularly does so. Emperor penguins breed during the harshest months of the Antarctic winter, and their mobility allows them to form huge huddled masses which help them to withstand the extremely high winds and low temperatures of the season. Without the ability to share body heat (temperatures in the centre of tight groups can be as much as 10C above the ambient air temperature), the penguins would expend far more energy trying to stay warm, and breeding attempts would probably fail.
Some crevice-nesting species, including ashy storm-petrel, pigeon guillemot, Eurasian eagle-owl and Hume's tawny owl, lay their eggs in the relative shelter of a crevice in the rocks or a gap between boulders, but provide no additional nest material. lay their single egg directly atop a broken stump, or into a shallow depression on a branch—typically where an upward-pointing branch died and fell off, leaving a small scar or knot-hole. , such as the New World , the , and many of the Old World and , lay their eggs in the active nests of other species.
Eggs and young in scrape nests, and the adults that brood them, are more exposed to and the weather than those in more sheltered nests; they are on the ground and typically in the open, with little to hide them. The eggs of most ground-nesting birds (including those that use scrape nests) are cryptically coloured to help camouflage them when the adult is not covering them; the actual colour generally corresponds to the substrate on which they are laid. Brooding adults also tend to be well camouflaged, and may be difficult to flush from the nest. Most ground-nesting species have well-developed distraction displays, which are used to draw (or drive) potential predators from the area around the nest. Most species with this type of nest have precocial young, which quickly leave the nest upon hatching.
In cool climates (such as in the high Arctic or at high elevations), the depth of a scrape nest can be critical to both the survival of developing eggs and the fitness of the parent bird incubating them. The scrape must be deep enough that eggs are protected from the convective cooling caused by cold winds, but shallow enough that they and the parent bird are not too exposed to the cooling influences of ground temperatures, particularly where the permafrost layer rises to mere centimeters below the nest. Studies have shown that an egg within a scrape nest loses heat 9% more slowly than an egg placed on the ground beside the nest; in such a nest lined with natural vegetation, heat loss is reduced by an additional 25%. The insulating factor of nest lining is apparently so critical to egg survival that some species, including , will restore experimentally altered levels of insulation to their pre-adjustment levels (adding or subtracting material as necessary) within 24 hours.
In warm climates, such as and salt flats, heat rather than cold can kill the developing embryos. In such places, scrapes are shallower and tend to be lined with non-vegetative material (including shells, feathers, sticks and soil), which allows convective cooling to occur as air moves over the eggs. Some species, such as the lesser nighthawk and the red-tailed tropicbird, help reduce the nest's temperature by placing it in partial or full shade. Others, including some shorebirds, cast shade with their bodies as they stand over their eggs. Some shorebirds also soak their breast feathers with water and then sit on the eggs, providing moisture to enable evaporative cooling. Parent birds keep from overheating themselves by gular panting while they are incubating, frequently exchanging incubation duties, and standing in water when they are not incubating.
The technique used to construct a scrape nest varies slightly depending on the species. Beach-nesting terns, for instance, fashion their nests by rocking their bodies on the sand in the place they have chosen to site their nest, while skimmers build their scrapes with their feet, kicking sand backwards while resting on their bellies and turning slowly in circles. The ostrich also scratches out its scrape with its feet, though it stands while doing so. Many tinamous lay their eggs on a shallow mat of dead leaves they have collected and placed under shrub or between the root buttresses of trees, and lay theirs on a pile of dead leaves against a log, tree trunk or vegetation. stomp a grassy area flat with their feet, then lay their eggs, while other grass-nesting waders bend vegetation over their nests so as to avoid detection from above. Many female ducks, particularly in the northern , line their shallow scrape nests with plucked from their own breasts, as well as with small amounts of vegetation. Among scrape-nesting birds, the three-banded courser and Egyptian plover are unique in their habit of partially burying their eggs in the sand of their scrapes.
In most mound-building species, males do most or all of the nest construction and maintenance. Using his strong legs and feet, the male scrapes together material from the area around his chosen nest site, gradually building a conical or bell-shaped pile. This process can take five to seven hours a day for more than a month. While mounds are typically reused for multiple breeding seasons, new material must be added each year to generate the appropriate amount of heat. A female will begin to lay eggs in the nest only when the mound's temperature has reached an optimal level.
Both the temperature and the moisture content of the mound are critical to the survival and development of the eggs, so both are carefully regulated for the entire length of the breeding season (which may last for as long as eight months), principally by the male. believe that megapodes may use sensitive areas in their mouths to assess mound temperatures; each day during the breeding season, the male digs a pit into his mound and sticks his head in. If the mound's core temperature is a bit low, he adds fresh moist material to the mound, and stirs it in; if it is too high, he opens the top of the mound to allow some of the excess heat to escape. This regular monitoring also keeps the mound's material from becoming compacted, which would inhibit oxygen diffusion to the eggs and make it more difficult for the chicks to emerge after hatching. The malleefowl, which lives in more open forest than do other megapodes, uses the sun to help warm its nest as well—opening the mound at midday during the cool spring and autumn months to expose the plentiful sand incorporated into the nest to the sun's warming rays, then using that warm sand to insulate the eggs during the cold nights. During hot summer months, the malleefowl opens its nest mound only in the cool early morning hours, allowing excess heat to escape before recovering the mound completely. One recent study showed that the sex ratio of Australian brushturkey hatchlings correlated strongly with mound temperatures; females hatched from eggs incubated at higher mean temperatures.
make a different type of mound nest. Using their to pull material towards them, they fashion a cone-shaped pile of mud between tall, with a small depression in the top to house their single egg. The height of the nest varies with the substrate upon which it is built; those on clay sites are taller on average than those on dry or sandy sites. The height of the nest and the circular, often water-filled trench which surrounds it (the result of the removal of material for the nest) help to protect the egg from fluctuating water levels and excessive heat at ground level. In East Africa, for example, temperatures at the top of the nest mound average some cooler than those of the surrounding ground.
The base of the horned coot's enormous nest is a mound built of stones, gathered one at a time by the pair, using their beaks. These stones, which may weigh as much as 450 g (about a pound) each, are dropped into the shallow water of a lake, making a cone-shaped pile which can measure as much as at the bottom and at the top, and in height. The total combined weight of the mound's stones may approach 1.5 tons (1,400 kg). Once the mound has been completed, a sizable platform of aquatic vegetation is constructed on top. The entire structure is typically reused for many years.
Most burrow nesting species dig a horizontal tunnel into a vertical (or nearly vertical) dirt cliff, with a chamber at the tunnel's end to house the eggs. The length of the tunnel varies depending on the substrate and the species; sand martins make relatively short tunnels ranging from , for example, while those of the burrowing parakeet can extend for more than three meters (nearly 10 ft). Some species, including the ground-nesting , prefer flat or gently sloping land, digging their entrance tunnels into the ground at an angle. In a more extreme example, the D'Arnaud's barbet digs a vertical tunnel shaft more than a meter (39 in) deep, with its nest chamber excavated off to the side at some height above the shaft's bottom; this arrangement helps to keep the nest from being flooded during heavy rain. Buff-breasted paradise-kingfishers dig their nests into the compacted mud of active termite mounds, either on the ground or in trees. Specific soil types may favour certain species and it is speculated that several species of bee-eater favor loess soils which are easy to penetrate.
Birds use a combination of their beaks and feet to excavate burrow nests. The tunnel is started with the beak; the bird either probes at the ground to create a depression, or flies toward its chosen nest site on a cliff wall and hits it with its bill. The latter method is not without its dangers; there are reports of kingfishers being fatally injured in such attempts. Some birds remove tunnel material with their bills, while others use their bodies or shovel the dirt out with one or both feet. Female paradise-kingfishers are known to use their long tails to clear the loose soil.
Some crepuscular and prions are able to identify their own burrows within dense colonies by smell. Sand martins learn the location of their nest within a colony, and will accept any chick put into that nest until right before the young fledge.
Not all burrow-nesting species incubate their young directly. Some megapode species, such as the maleo, bury their eggs in sandy pits dug where sunlight, subterranean volcanic activity, or decaying tree roots will warm the eggs. The crab plover also uses a burrow nest, the warmth of which allows it to leave the eggs unattended for as long as 58 hours.
Predation levels on some burrow-nesting species can be quite high; on Alaska's Wooded Islands, for example, river otters munched their way through some 23 percent of the island's fork-tailed storm-petrel population during a single breeding season in 1977. There is some evidence that increased vulnerability may lead some burrow-nesting species to form colonies, or to nest closer to rival pairs in areas of high predation than they might otherwise do.
Woodpeckers use their chisel-like bills to excavate their cavity nests, a process which takes, on average, about two weeks. Cavities are normally excavated on the downward-facing side of a branch, presumably to make it more difficult for predators to access the nest, and to reduce the chance that rain floods the nest. There is also some evidence that fungal rot may make the wood on the underside of leaning trunks and branches easier to excavate. Most woodpeckers use a cavity for only a single year. The endangered red-cockaded woodpecker is an exception; it takes far longer—up to two years—to excavate its nest cavity, and may reuse it for more than two decades. The typical woodpecker nest has a short horizontal tunnel which leads to a vertical chamber within the trunk. The size and shape of the chamber depends on species, and the entrance hole is typically only as large as is needed to allow access for the adult birds. While wood chips are removed during the excavation process, most species line the floor of the cavity with a fresh bed of them before laying their eggs.
Trogons excavate their nests by chewing cavities into very soft dead wood; some species make completely enclosed chambers (accessed by upward-slanting entrance tunnels), while others—like the extravagantly plumed resplendent quetzal—construct more open niches. In most trogon species, both sexes help with nest construction. The process may take several months, and a single pair may start several excavations before finding a tree or stump with wood of the right consistency.
Species which use natural cavities or old woodpecker nests sometimes line the cavity with soft material such as grass, moss, lichen, feathers or fur. Though a number of studies have attempted to determine whether secondary cavity nesters preferentially choose cavities with entrance holes facing certain directions, the results remain inconclusive. While some species appear to preferentially choose holes with certain orientations, studies (to date) have not shown consistent differences in fledging rates between nests oriented in different directions.
Cavity-dwelling species have to contend with the danger of predators accessing their nest, catching them and their young inside and unable to get out. They have a variety of methods for decreasing the likelihood of this happening. Red-cockaded woodpeckers peel bark around the entrance, and drill wells above and below the hole; since they nest in live trees, the resulting flow of resin forms a barrier that prevents snakes from reaching the nests. Red-breasted nuthatches smear sap around the entrance holes to their nests, while white-breasted nuthatches rub foul-smelling insects around theirs. Eurasian nuthatches wall up part of their entrance holes with mud, decreasing the size and sometimes extending the tunnel part of the chamber. Most female hornbills seal themselves into their cavity nests, using a combination of mud (in some species brought by their mates), food remains and their own droppings to reduce the entrance hole to a narrow slit.
A few birds are known to use the nests of insects within which they create a cavity in which they lay their eggs. These include the rufous woodpecker which nests in the arboreal nests of Crematogaster ants and the collared kingfisher which uses termite nests.
In December 2024, scientists reported that birds that build their nests in cavities are more than six times more likely to incorporate snakeskin into their nests than those which build cup-shaped nests. The same study found that the snake skin helped deter predators from eggs during their incubation period.
Small bird species in more than 20 passerine families, and a few non-passerines—including most hummingbirds, kinglets and crests in the genus Regulus, some tyrant flycatchers and several New World warblers—use considerable amounts of spider silk in the construction of their nests. The lightweight material is strong and extremely flexible, allowing the nest to mold to the adult during incubation (reducing heat loss), then to stretch to accommodate the growing nestlings; as it is sticky, it also helps to bind the nest to the branch or leaf to which it is attached.
Many swifts and some hummingbirds use thick, quick-drying saliva to anchor their nests. The chimney swift starts by dabbing two globs of saliva onto the wall of a chimney or tree trunk. In flight, it breaks a small twig from a tree and presses it into the saliva, angling the twig downwards so that the central part of the nest is the lowest. It continues adding globs of saliva and twigs until it has made a crescent-shaped cup.
Cup-shaped nest insulation has been found to be related to nest mass, nest wall thickness, nest depth, nest weave density/porosity, surface area, height above ground and elevation above sea level.
More recently, nest insulation has been found to be related to the mass of the incubating parent. This is known as an allometric relationship. Nest walls are constructed with an adequate quantity of nesting material so that the nest will be capable of supporting the contents of the nest. Nest thickness, nest mass and nest dimensions therefore correlate with the mass of the adult bird. The flow-on consequence of this is that nest insulation is also related to parent mass.
Some aquatic species such as are very careful when approaching and leaving the nest so as not to reveal the location. Some species will use leaves to cover up the nest prior to leaving.
Ground birds such as plovers may use broken wing or rodent run displays to distract predators from nests.
Many species attack predators or apparent predators near their nests. attack other birds that come too close. In North America, northern mockingbirds, , and can peck hard enough to draw blood. In Australia, a bird attacking a person near its nest is said to swoop the person. The Australian magpie is particularly well known for this behavior.
Nests can become home to many other organisms including parasites and pathogens. The excreta of the fledglings also pose a problem. In most passerines, the adults actively dispose the of young at a distance or consume them. This is believed to help prevent ground predators from detecting nests. Young birds of prey however usually void their excreta beyond the rims of their nests. calliphoridae of the genus Protocalliphora have specialized to become obligate nest parasites with the maggots feeding on the blood of nestlings.
Some birds have been shown to choose aromatic green plant material for constructing nests that may have insecticidal properties, while others may use materials such as carnivore scat to repel smaller predators. Some urban birds, house sparrows and house finches in Mexico, have adopted the use of cigarette butts which contain nicotine and other toxic substances that repel ticks and other ectoparasites.
Some birds use pieces of snake slough in their nests. It has been suggested that these may deter some nest predators such as squirrels.
Colonial breeders produce guano in and around their nesting sites, which is a valuable fertilizer from the Andean Pacific coast and other areas.
The saliva nest of the edible-nest swiftlet is used to make bird's nest soup, long considered a delicacy in China. Collection of the swiftlet nests is big business: in one year, more than 3.5 million nests were exported from Borneo to China, and the industry was estimated at $1 billion US per year (and increasing) in 2008. While the collection is regulated in some areas (at the Gomantong Caves, for example, where nests can be collected only from February to April or July to September), it is not in others, and the swiftlets are declining in areas where the harvest reaches unsustainable levels.
Some species of birds are considered nuisances when they nest in the proximity of human habitations. Feral pigeons are often unwelcome and sometimes also considered as a health risk.
The Beijing National Stadium, principal venue of the 2008 Summer Olympics, has been nicknamed "The Bird Nest" because of its architectural design, which its designers likened to a bird's woven nest.
In the 19th and early 20th centuries, often collected bird's eggs and their nests. The practice of egg-collecting or oology is now illegal in many jurisdictions worldwide; the study of bird nests is called caliology or nidology.
Artificial nests, such as , are an important conservation tool for many species, however nest box programs rarely compare their effectiveness with individuals not using nest boxes. Red-footed falcons using nest boxes in heavily managed landscapes produced fewer fledglings than those nesting in natural nests, but also than pairs nesting in nest boxes in more natural habitats.
In urban areas, where natural nesting materials can be hard to find, many birds have started using artificial items. The Eurasian coot has for example been observed to use artificial plastic plants into its nests, highlighting the blurred boundary between natural and human-made environments in the Anthropocene.
Saucer or plate
Platform
Pendent
Sphere
Nest protection and sanitation
Colonial nesting
Ecological importance
In human culture
Artificial bird nests
Notes
Cited texts
External links
|
|